Quantification of plasma HIV RNA using chemically-engineered peptide nucleic acids

نویسندگان

  • Chao Zhao
  • Travis Hoppe
  • Mohan Kumar Haleyur Giri Setty
  • Danielle Murray
  • Tae-Wook Chun
  • Indira Hewlett
  • Daniel H. Appella
چکیده

The remarkable stability of peptide nucleic acids (PNAs) towards enzymatic degradation makes this class of molecules ideal to develop as part of a diagnostic device. Here we report the development of chemically engineered PNAs for the quantitative detection of HIV RNA at clinically relevant levels that are competitive with current PCR-based assays. Using a sandwich hybridization approach, chemical groups were systematically introduced into a surface PNA probe and a reporter PNA probe to achieve quantitative detection for HIV RNA as low as 20 copies per millilitre of plasma. For the surface PNA probe, four cyclopentane groups were incorporated to promote stronger binding to the target HIV RNA compared with PNA without the cyclopentanes. For the reporter PNA probe, 25 biotin groups were attached to promote strong signal amplification after binding to the target HIV RNA. These general approaches to engineer PNA probes may be used to detect other RNA target sequences.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cellular Morphology and Immunologic Properties of Escherichia coli Treated With Antimicrobial Antisense Peptide Nucleic Acid

  Background & Objectives: Antisense peptide nucleic acids (PNA) that target growth essential genes show potent bactericidal properties without cell lysis. We considered the possibility that whether PNA treatment influence the bacteria total nucleic acids content and apply approach to develop a new delivery system to Dendritic cells (DCs). DCs are the most potent antigen presenting cells in th...

متن کامل

Effect of HIV-1 genetic diversity on HIV-1 RNA quantification in plasma: comparative evaluation of three commercial assays.

To the Editor: The rapid rate of HIV-I replication in vivo (10' virions per day), coupled with the poor fidelity of reverse transcription of the HIV-1 genome, results in the production of new virus variants (1). This makes it easy to understand how multiple clades of HIV-1 have emerged throughout the world and explains the development of genetic diversity even within clades (2). Numerous report...

متن کامل

Modified (PNA, 2'-O-methyl and phosphoramidate) anti-TAR antisense oligonucleotides as strong and specific inhibitors of in vitro HIV-1 reverse transcription.

Natural beta-phosphodiester 16mer and 15mer antisense oligonucleotides targeted against the HIV-1 and HIV-2 TAR RNAs respectively were previously described as sequence-specific inhibitors of in vitro retroviral reverse transcription. In this work, we tested chemically modified oligonucleotide analogues: alpha-phosphodiester, phosphorothioate, methylphosphonate, peptide nucleic acid or PNA, 2'- ...

متن کامل

The RNA annealing mechanism of the HIV-1 Tat peptide: conversion of the RNA into an annealing-competent conformation

The annealing of nucleic acids to (partly) complementary RNA or DNA strands is involved in important cellular processes. A variety of proteins have been shown to accelerate RNA/RNA annealing but their mode of action is still mainly uncertain. In order to study the mechanism of protein-facilitated acceleration of annealing we selected a short peptide, HIV-1 Tat(44-61), which accelerates the reac...

متن کامل

Creating a ribonuclease T-tat that preferentially recognizes and hydrolyzes HIV-1 TAR RNA in vitro and in vivo

A ribonuclease, RNase T-tat, specifically designed to hydrolyze the TAR RNA of HIV-1 virus has been engineered. The protein was made by domain swapping the TAT peptide at the loop 3 position of ribonuclease T1. The RNase T-tat maintains a guanine-specific RNA hydrolytic activity, and characteristically displayed a specific affinity for the TAR RNA of HIV-1. In the in vitro and in vivo assays, t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014